Robotic Exoskeleton Training Improves Walking in Adolescents with Acquired Brain Injury

New Jersey researchers find potential for gait training using robotic exoskeletons in the rehabilitation of adolescents and young adults with hemiparesis caused by acquired brain injury   

East Hanover, NJ. December 14, 2020. A team of New Jersey researchers has shown that gait training using robotic exoskeletons improved motor function in adolescents and young adults with acquired brain injury. The article, "Kinetic gait changes after robotic exoskeleton training in adolescents and young adults with acquired brain injury" (doi: 10.1155/2020/8845772), was published October 28, 2020 in Applied Bionics and Biomechanics. It is available open access at: https://www.hindawi.com/journals/abb/2020/8845772/

The authors are Kiran Karunakaran, PhD, Naphtaly Ehrenberg, MS, and Karen Nolan, PhD, from the Center for Mobility and Rehabilitation Engineering Research at Kessler Foundation, and JenFu Cheng, MD, and Katherine Bentley, MD, from Children’s Specialized Hospital. Drs. Karunakaran, Nolan, Cheng, and Bentley are also affiliated with the Department of Physical Medicine and Rehabilitation at Rutgers New Jersey Medical School.  

Acquired brain injury often results in hemiparesis, causing significant deficits in balance and gait that adversely affect functional ambulation and participation in activities of daily living. Gait training using robotic exoskeletons offers an option for motor rehabilitation in individuals with hemiparesis, but few studies have been conducted in adolescents and young adults. Findings from a preliminary study in this age group show promise for this intervention, according to Drs. Karunakaran and Nolan.

Participants included seven individuals (aged 13 to 28 years) with acquired brain injury (ABI) and hemiparesis and one healthy control. The ABI group included individuals with brain injuries due to anoxia, trauma, and stroke. All participants received 12 45-minute sessions of high-dose, repetitive gait training in a robotic exoskeleton (EksoGT, Ekso Bionics, Inc.) over a 4-week period. The gait training was administered by a licensed physical therapist supervised by a member of the research team.

“At the end of the 4-week training, participants had progressed to a more normal gait pattern,” said Dr. Karunakaran, “including improved loading, a longer step length and faster walking speed” Although results are promising, Dr. Nolan acknowledged the limitations of the study, including small sample size and lack of a control group: “Further study is needed to confirm the training effect in this age group with ABI, optimal dosing for the training protocol, and the durability of functional improvements.”  

Funding sources: Children’s Specialized Hospital, New Jersey Health Foundation (PC5-18), Kessler Foundation, Reitman Foundation

Learn about the Foundation’s ongoing studies in rehabilitation research aimed at improving outcomes of children with disabilities: https://kesslerfoundation.org/research/studies/pediatric

About Children's Specialized Hospital

Children's Specialized Hospital is the nation's leading provider of inpatient and outpatient care for children from birth to 21 years of age facing special health challenges--from chronic illnesses and complex physical disabilities like brain and spinal cord injuries, to developmental and behavioral issues like autism and mental health. At 13 different New Jersey locations, our pediatric specialists partner with families to make our many innovative therapies and medical treatments more personalized and effective so each child can reach their full potential.

About Kessler Foundation

Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research that seeks to improve cognition, mobility and long-term outcomes, including employment, for people with neurological disabilities caused by diseases and injuries of the brain and spinal cord. Kessler Foundation leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities. For more information, visit KesslerFoundation.org.

For more information, or to interview an expert, contact: Carolann Murphy, 973.324.8382, [email protected]

 

 

For more information, contact:
Deb Hauss, [email protected]
Carolann Murphy, [email protected]

Stay Connected with Kessler Foundation
X (formerly known as Twitter) | Facebook | YouTube | Instagram | SoundCloud