Robotic Exoskeletons and Neurorehabilitation for Acquired Brain Injury: Determining the Potential for Recovery of Overground Walking

New Jersey researchers provide framework for evaluating lower extremity robotic exoskeletons and their role in neurorehabilitation following acquired brain injury

East Hanover, NJ. August 14, 2023. A team of New Jersey researchers reviewed the evidence for the impact of robotic exoskeleton devices on recovery of ambulation among individuals with acquired brain injury, laying out a systematic framework for the evaluation of such devices that is needed for rigorous research studies.  The open access article, "Lower extremity robotic exoskeleton devices for overground ambulation recovery in acquired brain injury – A review” (doi: 10.3389/fnbot.2023/1014616), was published May 25, 2023 in Frontiers in Neurorobotics.

The authors are Kiran Karunakaran, PhD, Sai Pamula, Caitlyn Bach, Soha Saleh, PhD, and Karen Nolan, PhD, from the Center for Mobility and Rehabilitation Engineering Research at Kessler Foundation, and Eliana Legelen, MA, from Montclair State University.

Acquired brain injury was defined as cerebral palsy, traumatic brain injury or stroke. The review focused on 57 published studies of overground training in wearable robotic exoskeleton devices. The manuscript provides a comprehensive review of clinical and pre-clinical research on the therapeutic effects of various devices.

“Despite rapid progress in robotic exoskeleton design and technology, the efficacy of such devices is not fully understood. This review lays the foundation to understand the knowledge gaps that currently exist in robotic rehabilitation research,” said lead and corresponding author Dr. Karunakaran, citing the many variables among the devices and the clinical characteristics of acquired brain injury. “The control mechanisms vary widely among these devices, for example, which has a major influence on how training is delivered,” she added. “There’s also wide variability in other factors that affect the trajectory of recovery, including the timing, duration, dosing, and intensity of training in these devices.”


Summary of robotic exoskeleton research for overground walking in acquired brain injury.
Pie charts of recent study research on Exoskeleton
Studies (N=57) divided into three pie charts based on population (cerebral palsy, traumatic brain injury, stroke) and further divided based on study type.  

Developing a framework for future research requires a comprehensive approach based on diagnosis, stage of recovery, and domain, according to co-author Karen J. Nolan, PhD, associate director of the Center for Mobility and Rehabilitation Engineering Research and director of the Acquired Brain Injury Mobility Laboratory. “Through this approach, we will find the optimal ways to use lower extremity robotic exoskeletons to improve mobility in individuals with acquired brain injury,” said Dr. Nolan.

“It’s important to note that our review is unique in presenting both the downstream (functional, biomechanical, physiological) and upstream (cortical) evaluations after rehabilitation using various robotic devices for different types of acquired brain injury,” Dr. Karunakaran noted. “Each device needs to be evaluated by domain in each population and throughout all stages of recovery. This is the necessary scope for determining the response to treatment.”

Learn about the Foundation’s ongoing studies in rehabilitation research aimed at improving mobility. Visit Join Our Research Studies | Kessler Foundation , or contact [email protected]

About Kessler Foundation
Kessler Foundation, a major nonprofit organization in the field of disability, is a global leader in rehabilitation research. Our scientists seek to improve cognition, mobility, and long-term outcomes, including employment, for adults and children with neurological and developmental disabilities of the brain and spinal cord including traumatic brain injury, spinal cord injury, stroke, multiple sclerosis, and autism. Kessler Foundation also leads the nation in funding innovative programs that expand opportunities for employment for people with disabilities.


For more information, contact:
Deb Hauss, [email protected]
Carolann Murphy, [email protected]

Stay Connected with Kessler Foundation
X (formerly known as Twitter) | Facebook | YouTube | Instagram | SoundCloud